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Abstract—This paper s concerned with a theoretical analysis of an infinite zig-zag array of circular
inclusions in an inkaite solid under uniaxial tension. We take properly detined unit regions, assume
the complex stress potentials to be in the form of Luaurent and Taylor series expansions, and
determine the unknown coeflicients from the boundary conditions for the unit regions. Numerical
results for the interface stresses and the etfect of inclusions on the tensile stiffness of the sohid are
given for vanious combinations of the mechanical and geometric parameters. The results are litted
to reliable polynomial formulae for the convenience of engineering applications.

1. INTRODUCTION

A zig-zag array of circular inclusions is quite important, not only as an ordinary stress
concentration problem, but also as a model of randomly distributed inclusions in materials.
The purpose of this paper is to give @ near exact solution for an infinite zig-zag array of
circular inclusions in an infinite solid under uniaxial tension, and to examine the effects of
the size, location and rigidity of the inclusions on the interface stresses and tensile stiffness
of the solid.

This problem is treated by generalizing the previous analysis of an infinite zig-zag array
of circular holes (Isida and lgawa, 1991). We choose suitable unit regions, and assume
Laurent and Taylor serics expansions for the complex stress potentials in forms satistying
the continuity refations along the inclusion boundaries. The unknown coetlicients in these
series are determined from the boundiry conditions at the outer edges of the unit regions.
At this stage, we use @ new procedure based on elementwise resultant forces and dis-
placements which was developed by Isida (1971) in order to get highly accurate results,

Numerical caleulations are carried out for various combinations of mechanical and
geometric parameters. Results for the interface stresses and tensile stiffness of the solid
are represented in tables and figures, and are fitted to reliable polynomial formulae tor
convenicence tn engineering applications,

2. THEORETICAL ANALYSIS
2.1, Fundumental equations and description of problem
In plane clasticity. all the physical quantitics are given in terms of two complex
potentials ¢(z). ¢(2) and their derivatives, where - = x+iy (Timoshenko and Goodier,
1951).

Components of stress:

o, +0a, =434 Re[p'(2)] (1.1
g, —o,.+2t, =2[Z"(2)+ ¢ (2)]. (1.2)

Components of resultant force:
P +iP. = ~p(3 =3’ (2) —(2)+(an arbitrary constant). )

1518
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Components of displacement :

2G(u—ir) = kG(Z)—Z¢'(z) ~ () + (an arbitrary constant), (3)
where G is the shear modulus and « is defined by Poisson’s ratio v as

3—v

lane stress
K=<1+v (p )

)
3—4v  (plane strain).
Constunt terms in eqns (2) and (3) depend on the starting points from which P,. P, and «,
v are measured, but they are unessential in the analysis.
We also have the following expressions for the stresses in polar coordinates:
o, +0, = 4 Re[¢'(2)] (5.1)
2™ 072+ (2). (5.2)

i

Oy—a,+ 21,

This paper deals with an infinite solid containing an infinite zig-zag array of circular
inclusions. Let the radius of the inclusions be ¢, and the spacings between adjacent inclusions
in horizontal and vertical rows be 2h and 2¢. respectively, as shown in Fig. 1. The x- and
r-axes are taken with their origin at the center of one of the inclusions, and the solid is
subjected to an average tensile stress g in the v-direction. Figures 12(a) and 12(b) of Section
3.4 show the two typical arrays of inclusions corresponding to /b = | and \/3. which are
the square array and the cquilateral triangular array, respectively.

2.2. Complex stress potentialy

We take a proper unit region and express the complex stress potentials in forms
satisfying the symmetry conditions as well as the traction-free conditions along the inclusion
boundary. We then determine the unknown coctlicients in the stress potentials from the
boundary conditions at the outer edges of the unit region.

For the above unit region, we use the triangle ODFO or the rectangle ODHKO shown
in Fig. 1, as in the previous analysis of a zig-zag array of circular holes (Isida and Igawa,
1991). Usually the triangular region is more simple and convenient than the rectangular
region, but the latter is also used for farge values of ¢/h since the triangular region gives
poor results,

We denote the domains of the matrix and inclusion in the unit region by (B and (11},
respectively, and denote the shear moduli, Poisson's ratios, Young's moduli and the values
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Fig. 1. Infinite zig-zag array of circular inclusions in infinite solid subjected to tension,

nN]nm-qm]n;j

fe—— 3




Circular inclusions in solid under uniaxial tension 1517

of x of these domains by G,, v,. £, x; and Gy, vy, Ey. &y respectively. We also define the
dimensionless rigidity of the inclusions as follows:

M=—. (6)

=0and I' = x correspond to holes and rigid inclusions. respectively, and the present
analysis 15 valid in the whole range of [ including these special cases.

We now write the stress potentials ¢,(z). ¢,(z) and ¢y (2). ¥, (2) for domains (I) and
(IT) in proper expanded forms. ¢, () and (=) must be analytic in domain (II), and they
are expressed in the following Taylor series:

¢u(c) = z Kzttt (7.1)
e

yu() = Z [,z (7.2)
ne )

Note that symmetry dictates that all of the even power terms are missing and that the
cocthcients &, and /5, are real in the above expressions.

The stress potentials tor domain (1) may contain singularities inside the inclusion, and
they can be written as the following Laurent series:

B3 = T (Kpa ™ Fy ™) 8.1

a1

i) = ¥ (Lyz™* ' 4 Hyz ) (8.2)

n-—-0

Even power terms are missing and all the coeflicients are real for the same reason as for
eyns (7).

2.3. Boundury conditions alony inclusion
By using eqns (7) and (8) in eqns (2) and (3), the resultant forces and displacements
for domains (I} and (11) are given as follows:

kA

PatiPy = = ¥ (Ky " 4 Fyf 7 ) =2 § Qut Ky = Fy %)

n=A) "=

=S Loz YY) O
nei}

Pu+ify = - z kp 2t =2 3 Qi Dky s = 3 L,z 9.2)

7wt} nw=f nwi

26, —ivy) =K z (K2 4 Foa2 =3 ¥ Qi I(Kyy2 ™ = Fapz 7))

n-10 ne(

— Y (L Hy T Y (93)

"l

ZG“(U" —ilvll) = Ky Z ,\"_',,.'-:"* ! -z Z (2/1+ l)k:":Z'n_ Z [:,,::‘”.l. (9.4)

n=i} n=i) n=U

Arbitrary constants may be added to the right-hand sides of eqns (9.1)-(9.4), as shown by
eqns (2) and (3). but they are put to zero by assigning the conditions that P, = P, =0
along the x-axis, P,y = P,y =0 along the y-axis and ¢y =ty =0 along the x-axis,
u, = uy = 0 along the r-axis.

The above expressions must satisfy the continuity conditions for the stress and dis-



1518 M. Isiba and H. lGawa

T

placement along the inclusion boundary, that is. along - = ¢ ¢” and for any 0
P +1P =P +1Py. u—iry =uy—iy. (10)

Equations (9.1)-(9.4). together with eqns (10). give the following relations among the
coeflicients in the complex potentials (7) and (8):

L+ 1) ) ,
= R —_ = ¢
H, '<2F+K,|—I 1 Ju K, (L.n
-1 -1 I —kK
e T M= Da* L ol @i g Y e g > 1.2
H-, o+ I( n—HaL,, ‘+<D\',+ l( " )+ Fin a K., (n ) | )
F1 L= rjl [“Jn—lL‘ '+("”+l)(l‘“K‘ ] (”> l) (II -;)
1 - r,\ll +I -l et <M = e
i+ 1), Cx +1) .
o = zom———= Ngo Ky = — o K, > 1 11.4
A= kel "= Pt 2D (-4
Fin,+ 1) 5 .
—— - y — - 21— A = 1). .
l., o, + 1 L. +T(x+ ”(r~,+| r+~“) n—Na K, (n=1) (11.5)

Inserting eqns (11.1) (11.3) into eqns (8), ¢ (2) and () are reduced to the forms
containing independent unknowns A, and [.,,. Equations (11.4) and (11.5) give the
coctlicients in ¢y (2) and ¢, (2) Tor domain (11), afier K., and L, in ¢,(z) and ¢,(z) have
been determined.

2.4, Boundary conditions and determination of unknowns

As shown in the preceding section, the complex potentials (8), rewritten in terms of
the independent unknowns K, and L, using cqns (11.1)~(11.3), completely satisfy the
continuity conditions along the inclusion boundary as well as the symmetry conditions.
Theretore, the unknowns A, and L, must be determined only from the boundary con-
ditions along the outer edges of the unit region.

For the numerical caleulation, we use a method based on elementwise resultant forces
and displacements. This method was developed by Isida (1971) and proved a powerful
technique in analysing various problems of multi-connected domains (Isida, 1978 ; Isida
and Noguchi, 1984). The procedures for both the unit regions ODFO and ODHKO shown
in Fig. 1 are fully described in a previous analysis on circular holes (Isida and Igawa, 1991).
In the present paper, the procedure for only the triangular region will be stated.

Referring to Fig. 2, let M be the midpoint of the side DF of the triangular unit region
ODFO. Then the stress field is symmetric about point M, and any two points §, and S on
DF which are equally distant from M must be in the same stress state and the displacements
of these points relative to M must be the same. In order to take advantage of these
conditions in numerical computations, we divide the side DF into N equal intervals @, Q..
Q:0......0.Qv, ;. where Vis an cven integer, NV = 2m.

First, the two points Q, and @.,,. .., (t = 1,.2,...,m) which are equally distant from
the point Af or Q,, ., should be in the sume stress state. This requires the following conditions
on the resultant forces:

(Pl = [Pulgm (12.1)
(Pal§rer = [PalSemer o (1=1.2..... m;m = N/2). (12.2)

Secondly. the equality of the displacements at Q, and Q.. . _, relative to M requires
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Fig. 2. Triangular unit region.
that
)G = [n]gme (13.1)
(S =g =020 omim = N2 (13.2)

In eqns (12) and (13), the symbol [ ] denotes the difference in the values of the quantity
within the brackets at points Band A.
Furthermore, the resaltant forees along the side DE should balance the external load,

(Palh =0, (Pulh = ab. (14
Thus we have (2N + 2) boundary relations given by eqns (12) (14) for the independent
coctlicients K, and L., in the complex potentials (8). Corresponding to these relations, we
tuke K, and Lo, (n=0,1,2,...,N) as the unknowns neglecting higher order coctlicients,
and they are determined from the above boundary conditions.
2.5 Small inclusions
We consider the special case when the inclusions are extremely small. It can be treated

as a single inclusion in an infinite solid. In this case, the stress state at infinity gives the
following expressions tor the coetlicients Ky, and L, in the complex potentials (8)

K.‘n = LZn =0 (nz1l) (15)
which yield from egqns (11.1) (11.5)

[k, + 1 i r—1
u(,=”( (Wi + )l—l>u'. H,o=2 o, =0 (22 (16.1)

2\ 24w, — Sl Y
o -1 .
AR et F. = > 16.2
Foq Zrh‘.+|“ Fo =0 0nz1) (16.2)
and
ky =% FtatD _otrl) =0 w3z (17)

T A ny =t " T2 T+
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Equations (13)-(17) determine the complex potentials (7) and (8). Substituting them in
eqns (3) with - = re”, we get the polar components of the stresses in the matrix and
inclusion.

We are most interested in the interface stresses along the inclusion boundary (r = a).
They are given by the following explicit formulae:

_7(H_ T+l _3r-n s 9 )

Um—z(- ZTa— +91 o+ 1 cos 2¢ (18.1)
—JI'(' l)( l + ! cos’()) (18.2

o= g O S T P19 )
= =7 F(xi+1) L 20$ 7()) (18.3)

=01 = 3 Ki 4wy~ 1 Fry+ 1 cos & .

g Uk +1) .
Tt = T = 3 IE"\J:*I‘ sin 20, (18.4)
- 1
and the maximum interface stresses are given as follows:
(o C(xi+1) urqv < 4)
- = atf0 =0ifr <
2( 204wy — 1 Frp+1 it irr 3 -k
2An+ 1) o 4)
= - : atany 0if [ = 9.
L. ‘”(' x+o*~nm“~n) ("“Y' . (19.1)
p Tk, +1) 3w-n>( ™. 4 )
1- - at = _if [
L;’( 2r+I\'“—|+ P+ 1 ' 2| >3—-K|
=7 n( ! . )(wo—O) (19.2)
”l‘ll.m.u - 2 "l + 2r+h'“ - I I.KI + l d = &
= STttt} (ae=T (19.3)
all.lllil‘ - ”rllﬁhu e 2 ('\l + ) 2r+'\.“ ‘—l rl\.'l +l « = 2 .
o C(k +1) n
t:tll,m.u = t!ﬂll,lllzu = o) IEKIV‘*' l <il[ 0 = 4) (194)
- !

3. NUMERICAL RESULTS

3.1. General remarks on numerical analysis and accuracy of results

Poisson’s ratios v, and v, have only slight effects on the results, and throughout the
calculations, we assume v, = v, = 0.3 in the plane striin case or x;, = &y, = |.8.

Numerical results of this problem depend upon the following three parameters:

G, L, .
r=£=£(mam) (20)
/
“=Z"=:‘ (1)

We are especially interested in all the stress components along the inclusion boundaries,
since they are closely related to debonding or cracking of the inclusions. Another important
quantity is the effect of inclusions on the apparent tensile stiffness of the solid. In reference



Circular inclusions in solid under uniaxial tension 1521

to the latter quantity, the following dimensionless factor C is defined :

=

C= = tensile stiffness factor 2
0

E* = apparent Young's modulus of solid with inclusions 220

E, (plane stress)

E, = Young's modulus of matrix material = { (22.3)

EJ(1—v{) (plane strain)

where E; is Young's modulus of the matrix material measured with thin plate specimens.

The above-defined tactor ("= E*/E, is smaller or larger than unity according to
whether I' <  or " > 1. respectively. As shown later, it depends strongly upon the volume
fraction of the inclusions, f, which is defined as follows:

3

S = volume fraction of inclusions = ——— = I A (23)
2be 2
In representing the numerical results we also use the following parameter f instead of
r:
pol=!_Gu=G,
r+t G,+0G,
Ell _El
= —-—— (for the present case when vy = v). 24
ETE (for the present case when vy = vy) (24)

Numerical calculations have been carried out for all the possible combinations of the
following values of the parameters: I'=0,0.1,0.2,0.5,0.75, 1.5. 2, 3.33, 5, 10, o ; ¢ = 0.5,
I/\/l I.2and A =0, 0.1,0.2,.... Here the upper limit of 4 of course depends on .
Obviously, 4 cannot exceed the values for the extreme cases when some of the adjacent
mclusions touch cach other, as shown by Figs 3(a), 3(b) and 3(c¢) depending on the three
ranges of . This physical upper limit of 4 is given as a function of g in cach of the three
ranges, and is shown by a kinked dashed curve in Fig. 4. There is also a practical upper
limit on 4 for which the present analysis gives reliable results with reasonable computing
cost. [t has been found to be about 80% of the physical limit, that is,

0.8 (u < 1//3)
2 <08 /14171 (11 /3<ug U3 (25)
0.8/u (n2z \/-37)‘

This practical upper limit on 2 is shown by a kinked solid curve in Fig. 4.

AT

- w
L G AP

L X4
(@) u<1/V3 0)1/VI<n</3 (c) >3

Fig. 3. Three extreme cases when adjacent inclusions touch cach other.
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04 o —

Fig. 4. Range of vahdity.

For each combination of the three parameters I', p and 4. we have calculated the
maximum values of all the interface stress components in domains (1) and (I1). They are
denoted 48 g mace Toltas Frmas (= Frimae = Oriimad) AN Lo (= Tpmae = Tnfimae ). L HESE
values have been determined by calculating a,,. 6,,. ,. 7., for  at one degree intervals and
taking their largest values. The limiting values for 2 — 0 are explicitly given by eqns (19.1)
(19.4).

Numerical results by the present analysis are expected to approach the exact values
with increasing number of the boundary clements. As an example, Table | gives the results
for the case of ' = 0.5, g = 1 and £ = 0.5 calculated by using triangular unit regions with
4.8, 12 and 16 clements. We tind rapid convergence of the numerical results with increasing
values of ¥, and the errors seem less than 0.2%6 even for ¥V = 4, This procedure has been
used to confirnt the high accuracy of all the numerical results to be discussed in the following

section.

3.2 Effects of parameters on interface stresses and tensile stiffness

It would consume an cnormous number of pages to present here all the numerical
results calculated for 330 combinations of the parameters shown in the preceding section.
Moreover, when the values Tor some other combinations of T,y and 4 are required, we
have to make interpolations with respect to these three parameters, causing considerable
crrors in the results. For this reason, we have established reliable formulae for the five
quantities treated and referred to in Table 1. Before going to these formulae, fet’s make
some comments on the general trends of the numerical results for typical cases of the
parameters.

We begin with the stresses in the imiting case of 2 — 0. They are given by eqns (19.1)
(19.4), and the results for the present Poisson’s ratios (v = v, = 0.3 in plane strain) are
plotted against I' = GjG, in Fig. 5. In the range ' < 333, g, oceurs at § =0 and
decreases with increasing vadues of I, but when IT > 3.33, a4, takes placc at 0 = 90 and
increases with increasing values of T towards the imiting value for I' — » . The special case
of T = 3.33 gives “the neutral inclusion™ for which a.,,,,. Is constant, independent of (.
The 6, m. vs [ relution is thus given by a kinked curve. gy . 15 cqual to a, 4, independent
ol I'. though they occur at different points 0 =0 and 0 = 90, respectively. T, takes
place at # = 45 for any values of 7. The latter three stresses increase monotonically with
increasing values of 17, and approach their limiting values for I' = v shown by chained

lines.

Table 1. Varnations of results with number of subdivisions (I" = 0.5, g = |
and 4 = 0.5, triangular region)

N 001 maz/ 0 000 .maz/ 0 Or mar/0  Teowar/0  FE/Eg

4 1.63259 0.81242 0.839456 0.455%60 0.74053
8 1.83451 0.81360 0.89328 0.455397 0.74002
12 1.83450 0.813680 0.89323 0.45597 0.74001

16 1.63450 0.81360 0.89323 0.45597 0.74001
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Fig. 5. Maximum interface stresses for a single inclusion (plane strain, v, = v, = 0.3).

As for the magnitudes of these maximum interface stresses, we have the following
relations depending on three ranges of T:

Tt > n"ll.m.u = ﬂr.ln.n > rro'.nmx (r()r 0 < r < l) (26 l)
”l‘ll.m.u = ﬂuln.n > ﬂ'l‘l.m.u > Toomas (r("' l < r < lq") (262)
GHH.m.n = {rl'.lll.l\ > rr('.m.ﬂ > al”_m,u (r()r l‘)4 < r) (2()3)

The above behavior for extremely small inclusions is nearly maintained in the results
for zig-zag inclusions shown by Figs 6 9. Solid curves in these figures show the analytical

Analysis

20, ————Ean(27.1)
—-e-e--- Eqn (27.2)

Fig. 6. 0, m,.. 0.
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Analysis
P Eqn (29)
o

15

10

05

=0
o A e e n
0 02 04 06 ,.c 08
b
Fig. 8.0, .. '’
10 Analysis
------ Eqn (30)

02 04 06 1=

Fig. 9. Tam 0.
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values of the maximum interface stresses for typical values of the parameters. As is seen in
Fig. 6. 64 ma. decreases with increasing values of T for fixed values of pand 2 T < 3.33,
but the trend is reversed when [ exceeds 3.33. The maxima of the other siress components
tend to increase monotonically when I increases. as shown by Figs 7-9. but the effect of u
depends on I and 4, and is not so consistent as that of I,

The locations 8 of these stress maxima are also tmportant, since thev give useful
information on the initiation points of debonding or fracture of the inclusions. They are
nearly the same as shown in parentheses in eqns (19.1)-(19.4) and in Fig. 5 for a single
inclusion. [n the special case of a square array [Fig. 12()]. the values of # fOr 641 muc. Tnipmax
and o, ,,. are the same as for a single inclusion except for the range I' £ 0.2 and 4 > 0.5
where  tukes some values between 0 and 90 . As for t,,,,.. 0 is 45 if £ < 0.3, but for
larger values of 4. & increases or decreases from 43 according to whether M < T or I > L
Further discussions will be made in Section 3.4 for special arrays of inclusions.

Figure 10 shows the stiffness factor £*/E, plotted against 4 in a similar manner to that
for the stresses. Figure 11 is another diagram for £*, E,, in which the abscissa 4 is replaced
by /. the volume fraction of the inclusions defined by eqn (23). We find that the E*/E, vs
S curves for any fixed value of I in Fig. 11 lie within a band considerably narrower than
the corresponding £*/E, vs 4 curves in Fig. 10, In other words, the stiffness factor £% E,
is only shightly affected by the parameter £ and it is nearly a tunction of £1 A zig-zag array
of circular inclustons may be regarded as a typical model of randomtly distributed inclusions
in solids. Therefore. the above observation seems to suggest a strong f~dependence of the
tensile stiffness of actual solids.

3.3 Approximate fornndae for stresses and teasile stiffness fuctor

In this scction we proposc reliable formulue for the five quantities discussed above.
They are given as power series involving three parameters ', g, 2 or their substitutes, and
their cocflicients are determined so as to give the best fit to the analytical values in the least-
squares sense. The accuracy of this kind of formulac is improved by taking higher order
terms, but they can be truncated at the second- to the tourth-order terms for cach purameter
without substantial loss of accuracy.

20 ~
v i &
E* 2
Eo
15
N
. .02
M= r'\z \},:\’ v
N A
10 r=1
N h
2K . A
NG sy 95
=0 r=08
05+
< 0s
o
Analysis s,
0 i i i H i i H H
0 02 04 06 ,-2 08
b

Fig. 10, £¢ E, vs 4 relations for various [ and g

SA8 27-12-D
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15+
u=2
=0 P
> - 1 05
2
10 )
05
02 y=2
N Ty
s 105
= u=2
05t r=0 »
103
Qs 2
u=1
0
0 01 02 03 04 ¢ 05

Fig. L1 E* E,vs frelations for various T and .

In establishing these formulae. we consider the following aspects.

(i) For solids without inclusions (I' = 1), we must hiatve 04000 = Gotimae = G nae = 0.
Lyma = @ 2and £*/E, = 1. These requirements are satisficd by superposing positive power
series of (= 1) on the above known values for I' =

(i) The five quantitics treated must remain finite in both the extreme cases, t.e. when
I'=0and I' » ». This requirement is satisficd by replacing the variable introduced above,
("= 1), by (I"= /([ + +1), where A s a positive constant. [t is reasonable to determine this
constant so s to give the best (it to the analytical values. The optimum value of A has been
found to be around umity by trial-and-cerror, and we have decided to use o new rigidity
parameter ff defined by eqn (24).

(1ii) As for parameters other than I, g and £ are convenient for the stresses, but yand
[ are more suitable for the stiffness tactor £*/F, referring to the discussions regarding Figs
and L1

Taking the above into consideration, we have fitted power series to the analytical
values including those for the limiting case of 4 — 0 calculated from egns (19.1) (19.4). The
resulting expressions for the stresses and stiffness factor are as follows

(“"l,um( )l <3

= 1 = 1.353+0.45047 —0.186/" +Y Y '>’ AR (271

a I -0malbn O
Ty max B N : N : M
(Fananse e 0784 =0.1774°+0.0268 + % Y N Aapla gt (21.2)
I 0w 0
ﬂ may
[N =1 + Z Z Z I)‘;,',',!,”/l/ n:/‘m el (28)
f-Om-=A)og -0
Gr.lll.l( (r mpn s | -
14y Z Z Com iy (29)
g IA(I = =8
tr max = : : : " .
06 =054+3 Y Y Duiwp (30)
= EN
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——-—1+): Y Y Enf B 30

=0 m=10 nzl)

Values of the coefficients in eqns (27.1)-(31) are shown in Table 2. For 6, .../c only,
different formulae are proposed in two ranges I € 3.33 and [ > 3.33, considering its
behavior as shown in Fig. 6.

Equations (27.1)-(30) give reliable values for T 2 0.1 (1 > 2 —082). 05 uxg?2
and for 4 within the hatched area of Fig. 4. Equation (31) is valid in the same ranges of r
and p and for / < 0.5. The bottom row of Table 2 shows the mean per cent errors for these
formulae. They are between 1.3% and 4% for the stresses, and less than 0.2% for the
stiffness factor.

Values from the above formulae are also shown in Figs 6-9 and {1 by dashed or dotted
curves. We find these formulae to be fairly accurate. In Fig. 6 for g,,,../0. curves for
I" < 0.5 are not shown, but eqn (27.1) is valid for I’ > 0.1 as mentioned above.

3.4, Special arrays of inclusions

We are most interested in the special arrays of inclusions as shown in Figs 12(a) and
12(b). Analytical values of the maximum interface stresses and stiffness factor are given by
solid curves in Figs 13-17 for the square array and in Figs 18-22 for the equilateral
triangular array. The locations # of the maximum interface stresses are usually the same
as shown in parentheses in cqns (19.1)-(19.4) for a single inctusion, and are shown at the
tops of the corresponding figures. As for the exceptional cases, values of ) are also given
in parentheses in the figures. The curve for T = 0.1 in Fig. 13 is shown to fluctuate in
inclination, since ¥ begins to increase from zero around £ = 0.5, For comparison, values of
aq o at ! = 0 are also given by thin solid curves in Figs 13 and 8.

For these special arrays, we can establish two-parametric formulae which are more
reliable than the three-parametric formulac (27.1) -(31). They are the following equations

Table 2. Coctlicients in eqns (27.1) (30) (plane strain, v = vy = 0.3)
Al

I mn Bew ciz pil Eten
s3.33 rz3.33

2., 79%66 0.48610 0.5458 0.813! 0.3126 1.9864
-6.5293 | -2.6378 | -0.2780 | -0.2307 | -0.1348 | -0.5765
2.8987 3.70e8 0.1068 0.1044 0.0383 0.1901
-8.3745 | -1.4372 0.1903 0.0441 0.1043 0.0253
17.043 6,3568 0.0494 0.0135 0.0840 | -0.1984
-5.3930 | -8.7575 | -0.06855 | -0.0228 | -0.0470 0.11e6
3.4580 0.79a2 | -0.0703 | -0.0128 | -0.0420 | -0.0113
-6.8820 | -3.1490 | -0.0141 | -0.0082 | -0.0342 0.0854
1.6925 3.7658 0.0258 0.0044 0.0215 | -0.03e2
-4.9090 | -28.840 2.4582 0.7494 1.1971 0.2097
-4.9648 79.324 1.1515 0.0495 0.9533 6.30838
24.091 | -B2.771 | -0.6819 | -0.6333 | -0.420! | -3.7038
17.778 72.011 | -5.3514 | -1.0697 | -2.8198 | -0.3669
56390 | -196.16 | -2.3327 | -0.6948 | -2.5935 | ~B.5739
-66.171 127.40 1.8348 1.0225 1.3545 3.8481
-11.023 | -32.372 2.1288 0.2480 1.1735 0.1656
3.4860 85.618 0.8437 0.1823 1.0150 3.4283
30.372 | -54.150 | -0.7184 | -0.3023 | -0.5843 | -1.7020
-6.1235 21.843 | -5.6071 0.4256 | -1.3977 | -0.5777
32.099 | -56.474 | -3.5681 0.3484 | -2.3343 | -2.97957
-34.277 37.641 1.3269 1.11e8 0.5935 11.646
7.4438 | -55.636 12.145 | -4.4411 2.8640 1.0053
-73.724 139.18 7.6228 | -0.7173 5.9068 7.7313
100.39 | -90.200 | -3.4236 | -1.0536 | ~1.8996 | -16.160
2.6645 29.98t1 | -5.5516 2.4770 | ~1.4947 | ~0.4554
30.636 | -68.245 | -3.0918 0.9338 | -2.2826 | -2.8784
-84.172 42.509 1.4630 0.1348 0.8950 7.0315

WNNNNNNNNON e e e s — OO OQO0O0OOO
NN~~~ 000NN~ — 000NN ———~000
N~ON—~ON—~ON—ON—QN—~CON—~0ON—OCN~-O

Mean error (% 4.0 1.6 1.5 1.3 1.7 0.2




AC

O O
O O

O O
O O

vo

Fig. 12(a). Square array ofinclusions (u = 1).
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Fig. 12¢(b). Equikateral triangular array of inclusions {0 . | ":'6).
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% Y Y A:‘% 05

Fig. 13, 601 mae, @ fOr square array (g = 1).



Square array

%.max usually at §=0°
Analysis

----- Eqn (33)

0 0.2 04 =8 06
b
Fig. 13, oy ma /7 for squate array (e = 1).

Square array

Or,max usually at 6290°

Analysis
----- Eqn (34)

o r=0 i i " n
0 0.2 04 a=2 06
b
Fig. 15. o, ,../0 for square array (u = 1).
Square array
Tre.max usually at 8=45°
10k Analysis
----- Eqn (39)
Tomas E [z

T )

=0 |
0 2 04 ,.a 08
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Fig. 16. 1,y . /o for square array (u = 1),
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Square array

Analysis
Eqn (36)

0 o 02 03 04 ; 05

Fig, 17, E*E, for square array (u = ).

5- Equilateral triangular array

; (34)
Totrma i at §=0" it <333

o Ty man usuall
i Y at §-90°¢ 7>3.33

L~ AF\QlySlS {(Ti)e-c
y ——-=-Egn (37.1) . o
L Eqn (37.2) (6=17)

r=05 =
r=)
i
2 (667"
= %
(6457 12339 @59 @) (64 (49"
!
% 02 04 06 ,.9 08
b

Fig. 18, 0,y ../ @ for equilateral triangular array (¢ = 1."V/3).
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Analysis
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Equilateral triangular array

Tr max USUQ“Y at 9= 30°

15 E~x r-m Analysis
’ ----= Egn (39}

0 r=e
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. . . I
Fig. 20. a,,,,. o tor equilateral triangular array (o= 1.7 3).

Equtlateral tniangular array

Tra.mas usually at §=45°

00 Analysis
----- Eqn (40)
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e 3 @r @ 37
2 (e ((38‘;
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95| 1 (L&) @3y

M(s‘)
05 (62487 (597

Q2 (9:4M(60.)
Q.1 - (59°)

TTeo (Geiey N
0 02 04 06 ;.0 08
b

Fig. 21, v . o for equilateral triangular array (@ = 1 (' 3).
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Eguilaterc! triangular crraoy
20, - g v ,6’
f Analysis <
E*| --—-- Egn (41

Eo

15

1.0

05+

0 . N . . s
0 01 0.2 03 04 ¢ 05

Fig. 22 £* £, for cquilateral triangular array (u = 1. °3).

(32.1) (36) for the square array valid in the range 2 € 0.6, and equations (37.1) - (41) for
the equiliteral triangular array valid o the range £ < 0.8, 3, .., 1s represented by different

tormulae in two ranges [ < 333 and [T = 3.33. Other quantities are fitted to single formulae
in the whole range of 1) The accuracies of eqns (27.1) (41) are reasonable, as seen from
the mean per cent errors given in parentheses with each of the formulac.

Square array of inclusions (p = 1) :

((rﬂl.um\ )l -

s - 13564+ 0,423 = 0,149 +0.0704"

+ A= 2043+ 3436 — 1.330/ +2.538)%)
+M0.854 +8.2828 — 10.563(1° — 18.728 ")
+4(4.426 - 27,5431 + 14.574f7 + 58.076/s )]
(mean error 4.0%)  (32.1)

‘al'l.m.n )l'.' 31

. = B0.784~0.1774+0.026/" + i 1(0.271 —0.667 —0.596/3%)
FANT 64 =212+ 149157 + 24 (2.216 — 1817 —0.9224)]

(mean error 1.4%) (32.2)

Tottanas + B[0.675=0.2104+0.05247 —0.0334 ' +0.028*

+ (= 0943 04828 40,7225 ~0.1028* ~0.32248%)
+ 23S+ 1526 = 161647 03624+ 1.3115H]

(mcan error 1.3%) (33)
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FB10.649 —0.21 15+ 0.05087 — 0.043 " +0.0404*
+4(—0.179-0.3988+0.7898" +0.3043° — 0.6525%)

+ 47— 1.310+0.9908 — 1.768° — 16038 + 2.3115%)]
{mean error 0.7%) {(34)

" = 0.5+ [0.376 —0.0778+0.0025° — 0.0188" +0.0254"
+2(—0.486 —0.7348+0.6998% +0.277* —0.6184%)

+22(0.067 + 19848 — 1.605B% — 1.3078 +2.0675%)]

{mean error 2.1%) (35)

+£B[1.996 - 0,726/ +0.234% + £(0.027 + 1.660 — 0.8763%)

F [ =0.054 - 0154 = 0.634/82) + /1(0.006+ 2.362fs + 3.861 /)]

{(mean error 0.1%).  (36)
oy . P e liioong (g = 1/ 71)-
:ral triangular array of inclusions (u = 1/{/3):

((r"l,m.u )l “

s L= 1356+ 04238 - 0.14947 +0.0708"

+43(=0.825+ 1534 —0.463s +0.2021")
+ Y1810 =3.0388 —0.4668> —2.4851")
+ 23— 1706+ 1.5928 + 1.3968 + 6.578t 1))
(mean error 2.0%)  (37.1)

((’.M,m.n’! KRR

T = 078401776 +0.0260 + 23~ 0.062 - 0.099 + 0.02845")
+5(0.997 = 2814 +0.766f8%) +4*(0.327 — 0.282f3 + 1.0694)]

(mean error 0.9%) (37.2)

Ol)ll,m.l Y

= [+ f1{0.629 - 0.231 +0.069/3* —0.046f° +0.0245*

+4(0.13240.0894+0.21242 +0.112f° —0.1354%)
+43(—0.562—0.169/4—0.3594% — 0.3654" +0.36 7))

(mean cerror 1.1%)  (38)

”6 = 14 0.634—0.191+0.074° — 0.052/8* +0.0465*

+4(0.235-0.5018+0.1048% +0.2663" — 0.524/1)
347 40.8208 = 0.01782 —0.8468" + 1.2408%)]

(mcan error 1.4%)  (39)
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Trimuax

o= 0.5+ B[0.360 —0.0818 —0.0098° —0.0298 +0.0378*

+4(—0.053-0.4018+0.5868" +0.3588" —0.5534%)
+47(—0.2144+0.8175—1.0248°—0.8588" + 1.1508°)]
(mean error 1.3%) (40)

*

E -, -
C= £ = L+ fB{1.997—0.7215+0.2428° + £(0.010+ 3.4788 — 1.8384")
0

+ 7(0.078 —3.6145+3.29887) + /*(—0.245+ 5.260 + 1.8815°)]

(mean error 0.2%).  (41)

Dashed and dotted curves in Figs 13-22 show the results from formulae (32.1)-(41).
and we find these formulae to be highly accurate. In particular, egns (36) and (41) for
E*/E, give highly accurate values, as seen in Figs 17 and 22.

Finally. the numerical values for £*/E,, for these special arrays are given in Tables 3
and 4, taking 4 instead of f as the geometric parameter.

4. CONCLUDING REMARKS

A theoretical analysis was performed for an infinite zig-zag array of circular inclusions
in a two-dimensional solid under uniaxial tension. Computations were carried out for 330
combinations ot mechanical and geometric parameters, and the maximum interface stresses
and tensile stiffness of the solid were calculated.

For any fixed values of G,/G,. the tensile stiffness factor of the solid is little affected
by the distribution pattern of the inclusions, and is ncarly a function of f, the volume
fraction of the inclusions. This seems to suggest a strong f~dependence of the tensile stiffness
ol actual solids with randomly distributed inclusions.

Results tor the maximum interfuce stresses and the tensile stitffness factor were fitted
to power series formulae. They enabled us to obtain reliable values for arbitrary com-
binations of the parameters.

Table 3. £*: £, tor square array of inclusions

)\r 0 0.2 0.5 1.5 2.0 5.0 oo

0.1 0.954 0.973 0.988 1.006 1.010 1.017 1.024
0.2 0.823 0.826 0.954 1.024 1.038 1.070 1.097
0.3 ] 0.831 0.777 0.888 1.054 1.087 1{.183 1.229
0.4 | 0.414 0.631 0.824 1.088 1.1680 1.308 1.443
0.5 | 0.216 0.482 0.740 1.158 1.264 1.535 1.815
0.6 | 0.072 0.354 0.654 1.240 1.417 1.843 2.683

Table 4. £* E, for equilateral triangular array of inclusions
r

2 0 0.2 0.5 1.5 2.0 5.0 oo

0.1 0.973 0.985 0.923 1.003 1.006 1.010 1.014
0.2 | 0.8928 0.840 0.973 1.014 1.022 1.041 1.057
0.3 | 0.790 0.872 0.941 1.031 1.051 1.095 1.134
0.4 | 0.662 0.787 0.8¢3 1.057 1.0e3 1.178 1.257
0.5 | 0.528 0.691 0.847 1.090 1.150 1.288 1.444
0.6 | 0.397 0.590 0.789 1.134 1.2268 1.472 1.742
0.7 | 0.2688 0.487 0.727 1.188 1.32% 1.731 2.2%6
0.8 | 0.146 0.388 0.661 1.255 1.457 2.134 3.284
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