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,\bstract - This paper is Cllnccrm:d with a theoretical analysis of an infinite zig-zag arr;,y of circular
inclusions III ,Ill intimte solid under unia~ialtension.We take properly dclined unit regions. assume
the complc~ stress potentials to he in the form of Laurent and Taylor series e~pansions. and
determine the unk'1l1wn coellicients from the t>oundary conditions for the unit regions. Numerical
results fl'r the Interface stresses and the ellcct of inclusions on the tensile stiffness of the solid arc
given for v,mous comt>llIations of the mechanical and geometric parameters. The results arc Iitled
to rcli"t>le poly'l\lmial formulae fllf thc convenicnce of enginccring applications.

I. INTRODUCTION

A zig-zag array of cin:ular inclusions is quite important. not only as an ordinary stress
concentration prohlem, hut also as a model of randomly distrihuted inclusions in materials.
The purpose of this papcr is to give a ncar exact solution for an inlinite zig-zag array of
circular inclusions in an infinite solid under uniaxial tension. and to examine the clrects of
the size, location and rigidity of the inclusions on the interface stresses and tensile stilrness
of the solid.

This problem is treated hy generalizing thc previous analysis of an infinite zig-zag array
of circular holes (lsida and Igaw;t, IlJlJ I). We choose suitable unit regions, and assumc
Laurent and Taylor series expansions for the complex stress potentials in forms s;ttisfying
the wntinuity relations along the inclusion boundaries. The unknown wcllkients in these
series arc determined from the houndary wnditions at the outer edges of the unit regions.
At this stage. we use a new procedure hased on e1ementwisc resultant forces and dis­
pl;tcements which was developed hy lsida (llJ71) in order to get highly accurate results.

Numerical calculations arc carried out for various combinations of mechanical and
gcometric parameters. Results for the interfacc stresses and tcnsilc stilrness of thc solid
arc represented in tahles and ligures. and arc lilled to reliable polynomial formulae for
convenience in engineering applications.

~. THEORETICAL ANALYSIS

2.1. FUlldal/1elllll1 eC/1lC/tiollS alld descriptioll o./prvh!em
In plane elasticity, all the physical quantities arc givcn in terms of two complex

potentials cp(:). IjJ(:) and their derivatives. where: = x + iy (Timoshenko and Goodier.
1951 ).

Components of stress:

a, +a, = 4 Re [c/J'(:)]

a,-a,+2ir" = 2[=c/J"(:)+IjJ'(:)].

Components of resultant force:

P, + iP, = - cP(:> - =(p'(:) -1/1(:) + (an arbitrary constant).

( 1.1 )

( 1.2)
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Components of displacement :

2G(u- it·} == K(P<=l -:¢'(::) -!/J(::) + (an arbitrary constant).

where G is the shear modulus and 1\ is ddined by Poisson's ratio I' as

(3)

(plane stress)

(plane strain).

(4)

Constant terms in egns (2) and (3) depend on the starting points from which PI' P, and II,

I' are measured. but they are unessential in the analysis.
We also have the following expressions for the stresses in polar coordinates:

(1" +(1r =4 Re [4>'(::»)

O'o-(J,+2ir,lI:=; 2e~i"[':¢"(::)+rj/(:)J.

(5.1 )

(5.2)

This paper deals with an infinite solid containing an infinite zig-zag array of circular
inclusions. Let the radius of the inclusions be a. and the spacings between adjacent inclusions
in horizontal and vertical rows be 211 and 2('. respectively, as shown in Fig. I. The .1;- and
y-axes an: taken with their origin at the center of one of the inclusions. and the solid is
subjected to an average tensile stress a in the .l'-direction. Figures 12(a) and 12(b) of Section
3... show the two typic,lI arrays of inclusions corresponding to c/h :=; I and )3. which arc
the square array ,md the equilateral triangular array. respectively.

2.2. CIIlI/p/I'X s(rl'SS [llIfl'mia/.I·
We take a proper unit region and express the complex stress potentials in forms

satisfying the symmetry conditions as well ,IS the traction-frce conditions along the inclusion
houndary. We then determine the unknown coefficients in the stress potentials from the
houndary conditions at the outer edges of the unit region.

For the above unit region. we usc the triangle ODFO or the rectangle ODHKO shown
in Fig. I. as in the previous analysis of a zig-zag array of circular holes (Isida and 19awa,
IlJlJ I ). Usu,llly the triangular region is more simple and convenient than the n.:ctangular
region. but the latter is also used for large valucs of £'ill since the tri~lngular region gives
poor rcsults.

We denote the domains of the matrix and inclusion in the unit region by (I) and (II),
n:spectively. and denote the shear moduli, Poisson's ratios. Young's moduli and the values

Fit:. I. Infinitc zlt:-zag array of circular inclusinns in intinilc solid suhjccted In tcnsinn.
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of /( of these domains by Gt. VI' E1• /(1 and Gu• l'U' Ell. /(u. respectively. We also define the
dimensionless rigidity of the inclusions as follows:

(6)

r = 0 and r = x correspond to holes and rigid inclusions. respectively. and the present
analysis is valid in the whole range of r including these special cases.

We now write the stress potentials cf>,(:). t/!,(:) and cf>1I(:). t/!II(:) for domains (I) and
(II) in proper expanded forms. cf>1I(:) and t/!II(:) must be analytic in domain «I). and they
are expressed in the following Taylor series:

(7.1)

(7.2)

Note that symmetry dictates that all of the even power terms are missing and that the
cocllicients k en and I:" arc real in the ahove expressions.

The stress potentials for domain (I) may contain singulurities inside the inclusion. and
they can he written as the following Laurent series:

(P,(:) = L (K:"::,, .. I+F:,,:·:"·')
11_0

II. (-) _ "(I _:""'+11 - ':" ')I' I - - L.. .I ~"... ~,,- •

11- II

(8.1 )

(8.2)

Even power terms arc missing and all the coellicients arc real for the same reason as for
eqns (7).

2.3. BOlllltlary ('(mt/iriolls alollg illelusion
By using cllns (7) and (8) in cqns (2) and (3), the resultant forces and displacements

for domains (I) and (II) are given as follows:

'-
p" + iP" = - L (K:,,:1" + 1+ F1n:- 1n-,) -: L (211+ I)(K,,,:1" - F1":-1,,.1)

n~l) n~O

'f.

"(L -'''~'+H • :n.l)- L ~,,- 2n-
t,.u

~ L ~

P",+iP,u = - L k:,,:''''''-: L (211+I)k:n:'''- L 1:,,:'''+1
ll-U n_() ft.£)

~ ~

2G,(u,-il',) = "I L (K,,,:'''''' +F,,,: ,,,.,)-: I (21/+ I)(K,,,:'''-F,,,:''''·')
,,- U If .. 0

f _

_ "(L .,,, .. , + If - -,,, I)
'- ~1f- ~n-

,,-0
r r. £

2G,,(II 11 - il'lI) = 1\11 L k,,,::"+ , -: L (21/ + I)k,,,:'" - L 1,,,:'''+ I,
n_lJ n_() n-U

(9.1 )

(9.2)

(9.3)

(9.4)

Arbitrary constants m.IY be added to the right-hand sides of eqns (9.1 )-(9.4), as shown by
eqns (2) and (3). but they arc put to zero by assigning the conditions that P" = P dl = 0
along the x-axis. P" = P rU = 0 along the y-axis and l', = [·u = 0 along the x-axis.
II, = 1/11 =0 along the y-axis.

The 'Ibove expressions must satisfy the continuity conditions for the stress and dis-
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placement along the inclusion boundary. that is. along:: = a e'" and for any f}

P,,+iP d = P,II+iPdl •
. .

III - II', = 1/11 - 11'11' ( 10)

Equations (9.1 )-(9.4). together with eqns (10). give the following relations among the
coetficients in the complex potentials (7) and (8):

(
n,,:,+I) )'

H o =2-'f '_I-ItrKo
- +1\11

f -I J ( f -I , fh"I-h"II) J '.H, =-·_·--(211-I)a n[, ,+ ---.-- (4n--I)+ -----.-- a n+_I\., (II ~ I)
." f,,', + I .". fh"1 + 1 f + "'11 _n

f-I
Fe" ' = [aJ" e[:" :+(211+ I)aJ"Ke"j (II ~ I)- f,,', + I

k = El"i:+-.IL K k, = ~(~'I~~} K. (11 ~ I)
o 2f+"'11- 1 o· .n f+":11 -"

(11.1 )

( 11.2)

(11.3)

(11.4)

(11.5)

Inserting eqns (11.1) (11.3) into eqns (X). (PI(::) and '/I.l::) arc reduced to the forms
wntaining independent unknowns A' e" and I.:". Equations (II A) and (11.5) give the
wdlicients in (/1 11 (::) and IPII(::) flll' domain (II), after Ke" amI L e" in ell ,(::) and '/11(::) have
oeen determined.

2.4. BOllllclary ('olleli(iollS ami ell'(crill illil (ioll olllllk /1011'11.\'

;\s shown in the preceding section, the complex potentials (X), rewritten in terms of
the independent unknowns K J" and L e" using eqns (11.1) -( 11.3), completely satisfy the
wntinuity conditions along the inclusion boundary as well as the symmetry conditions.
Therefore. the unknowns K J" and L J" must oe determined only from the boundary con­
ditions along the outer edges of the unit region.

For the numeril.:all.:akulation, we use a method based on elementwise resultant forl.:es
and displaceOlI.·nts. This method was developed by Isida (1971) and proved a powerful
tedllliq ue in analysing various problems of multi-connected domains (Isida, 1978; Isida
and Noguchi, 19X4). The prol.:edures for both the unit regions ODFO and ODHKO shown
in Fig. I are fully described in a previous analysis on circular holes (Isida and 19awa, 1991).
In the present paper, the procedure for only the triangular region will be stated.

Referring to Fig. 2, let AI be the midpoint of the side DF of the triangular unit region
ODFO. Then the stress field is symmetril.: about point M, and any two points SI and S~ on
DF which are equally distant from AI must be in the same stress state and the displacements
of these points relative to M must be the same. In order to take advantage of these
wnditions in numerical computations, we divide the side DF into N equal intervals Q,QJ'
QJQ .. .... Q,Q \ , I' where N is an even integer, N = 211I.

First. the two points Q, and Qem. J • I (t = I. 2, ... ,Ill) which are cqually distant from
the point AI or Qm, I should be in the same stress state. This requires the following conditions
on the resultant forces:

[P,d8:"" = [P,d8.::~·,' ,

[P,d8:"" = [P,d0.::~·," (t = I, 2... .,11I; III = N/2).

(12.1 )

(12.2)

Secondly. the equality of the displacements at Q, and Qem, el relative to AIrcquires
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Fig. 2. Triangular unit n:gion.

[II JS'" ., = [II r~'''''' ,I L I L .. ,

[/'d~:'" I = [/'d0.::·;·,:' (t = I. 2.... , m; m = Ni"2)'

1519

(13.1)

( 13."2)

In ellns (I "2) and (13). the symhol [ I': denotes the dillcrelH:e in the values of the quantity
within the brackets at points IJ and A.

Furthermore, the resultant forces along the side DF should halance the external load.

( 14)

Thus we have (2N +2) boundary relations given by eqns (I "2) (14) for the independent
eoellicients K1" and L~" in the complex potentials (~). Corresponding to these relations. we
take K 1" ~tnd L 1" (II = O. I. "2..... N) as the unknowns negketing higher order eoellkients.
and they arc detamined from the above boundary conditions.

"2.5. Small illclll.l'il/IIS

We consider the special case when the inclusions ~Ire extremely small. It can be treated
as a singk inclusion in an infinite solid. In this case, the stress state at infinity gives the
following expressions for the coellicients K1" and L 1" in the compkx potentials (~):

which yield from el/ns (11.1) (11.5)

(\ 5)

(1 ( n"" + I) ),
II" =, 'r . _ I - I (I".

- - +"11

(1 r-I
11 1 = , r· I (/~,

- 1\1 +
II~,,=O (1I~2) (16.1 )

(1 r -I ,
Fo = , r . I a-. F:" = 0 (II ~ I)

- 1\1 +

and

( 16."2)

(1 n", + I)
1,,=, r'-I' k~,,=/~,,=O (1l~1).

- 1\, +
( 17)
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Equations (15)-( 17) determine the complex. potentials (7) and (8). Substituting them in
eqns (5) with == r e oH

• we get the polar components of the stresses in the matrix and
inclusion.

We are most interested in the interface stresses along the inclusion boundary (r = a).

They are given by the following explicit formulae:

a (I I )ad = a,1I = ~ r(1\1 + I) ;'r . _ I - -r~-:~I· cos 20
- - +"11 "1+

and the maximum interface stresses are given as follows:

(T(.~_ r(K,+I) _3(r-I») ( 4)
, at (} = 0 if r < 3 _ L'

I2 2r+h'II-1 rKI+1 n.

(18.1 )

( 18.2)

( 18.3)

( 18.4)

(at any (} if r = 3~"J
( at 0 = ~ itT> :\ ~ .)

~ . "I

( 19. I )

(T (I I)
(TOII.III." = 1 r(,,·, + I) 1(" . _I + (. . I

- - +"11 "I +
(at (} = 0) ( 19.2)

r,OI.IIl.1\ = r,OIl.IIl'" = ~ r~::::) (at 0 = ;).

(at 0 = ;) ( 19.3)

(19.4 )

J. NUMERICAL RESULTS

3.1. General remarks 011 IIl/l/Iericul allalysis ulld uccurucy of results
Poisson's ratios \'1 and \'11 have only slight e1Tects on the results, and throughout the

calculations, we assume \'1 = \'11 = 0.3 in the plane strain case or 1\, = "'11 = 1.8.
Numerical results of this problem depend upon the following three parameters:

h
/I = ,

c

(20)

(21 )

We arc especially interested in all the stress components along the inclusion boundaries,
since they arc closely related to debonding or cracking of the inclusions. Another important
quantity is the effect of inclusions on the apparent tensile stiffness of the solid. (n reference
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to the latter quantity, the following dimensionless factor C is defined:

E*
C = E~ = tensile stiffness factor

E* = apparent Young's modulus of solid with inclusions

{
E'

Eo = Young's modulus of matrix material = E,/( 1- \',!)

(plane stress)

(plane strain)

(22.1 )

(22.2)

(22.3)

where E1 is Young's modulus of the matrix material measured with thin plate specimens.
The above-defined factor C = E* /Eo is smaller or larger than unity according to

whether f < I or f > I. respectively. As shown later. it depends strongly upon the volume
fraction of the inclusions./. which is defined as follows:

r I f
. f . I' n:a! n:. ,. = vo ume ractlOn 0 inC uSlOns = 1/1' = "1 t. -II,- ( - (23)

In representing the numerical results we also usc the following parameter /1 instead of
f:

f-I Gil-G.
/1=----=-­

f+1 GlI+GI

EII-El

= E,~-+E~
(for the present case when \', = \'11)' (24)

Numerical calculations have been C<lrried out for all the possible combinations of the
following values of the parameters: f = 0,0, I. 0.2, 0.5, 0.75, 1.5.2,3.33.5. 10. ox; ; It = 0,5.
1/}3, I, 2 and ;. =O. 0.1,0.2, .... Here the upper limit of ;. of course depends on 11.
Obviously, ;. cannot exceed the v;IIues for the extreme cases when some of the adjacent
inclusions tom:h em:h other. as shown by Figs 3(4.1), 3(0) and 3(c) depending on the three
ranges of JI. This physical upper limit of ;. is given ;IS a function of JI in e;lch of the three
ranges. and is shown by a kinked dashed curve in Fig. 4. There is also .1 practical upper
limit on ;. for which the present analysis gives reliable results with reasonable computing
cost. It has been found to be about lW'Y.. of the physical limit. th;lt is.

(11 ~ 1/}3)

(I/J3 ~ It ~ J3)

(It ~ J3).
(25)

This practical upper limit on ;. is shown by .1 kinked solid curve in Fig. 4.

+0'
+0-

(b +0'

0800 +0-
to' +0'

(0) 1!<1//j (b) I/v'! < I! < fJ (c) I! > 13

Fig. 3, Three extreme eases when adjacent inclusions touch cach other.
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For each combination of the three parameters r. JI and i.. we have calculated the
maximum values of all the interface stress components in domains (I) and (II), They arc
denoted as (TOl.rn,l\. 0"1111,111,". O"r.Ill.l\ (=== "rl.rnd\ = (1rll.lll.l\) and f rr l. Ill ,,\ (= !rlll.rn;l\ =- !,lIll.rn.I'<)' These
values have been determined by calculating 111/1' 0"1/11' (T,. r". for ti at one degree intervals and
taking their largest values. The limiting values for i. ~ 0 are e\plicitly given by eqns (19.1)
( 19.4).

Numerical results by the present analysis are c\pccted to approach the exact values
with increasing number of the boundary clements. As an e\ample. Taole I gives the results
fl1f the case of r == 0.5. JI == I and i. == 0.5 calculated by using triangular unit regions with
4, ~. I~ and I(1 clements. We lind rapid convergence of the numerical resulls with increasing
valuL's of N. and the errors seem kss than O.~'~;, even for;\' = 4. This procedure has heen
used to conlirm the high ac\.'uracy of all the numerical results to he discussed in the following
scction.

3.~. /;'/11'1'/.\' ol!'((/'{I/III'lcr.l' 1111 illlcr/i/('(' .1'11'1'.1'.1'1'.1' ((I/d II'I/si/I' .I'liIIi/('s.l'

It would consume an enormous numher of pages to present here all the numerical
results calculated for :UO comhinations of the parametas shown in the preceding section.
M\lreover. when the values for some other comhinations of r. II and i. arc required. we
have to make interpolations with respect to these three parameters. causing considerahle
errors in the results. For this reason. we have estahlished rdiahle formulae for the five
quantities treated and referred to in Tahk I. Before going to these formulae. let's make
some comments on the general trends of the numerical results for typical cases of the
pa ra meters.

We hegin with the stresses in the limiting case of i. ~ O. They are given by eqns (19.1)
(19.4). and the n.:sults for the present Poisson's ratios (\', = \'11 = 0.3 in plane strain) are
plotted against r == (illi(i, in Fig. 5. In the range r < 3.33, ""1.11'''' occurs at () == 0 and
decreases with increasing values of r. but when r > .\.33. 11",,,,.,, takes place at () = 9() and
increases with increasing values of r towards the limiting value for r -. '/.. The special case
of r = 3.33 gives "the neutral inclusion" for which 11"1.",.,, is constant. independent of ti.

The "'1111'." vs r rclation is thus given by a kinked curve. ""'1"'." is equal to "'.111'" independent
of r. though they occur at dill'crent points () = 0 and () == 9() . respectively. roll"'''' takes
place at () == 45 for any values of r. The latter three stresses increase monotonically with
increasing values of r. and approach their limiting \~t1ues 1'\11' r ...... 'r. shown hy chained
lines.

'['ahk I. Variatiolls or n.:sulls "ilh llulllhcr "I' suhdivisltlllS Ir = 0.5. /' oc I
alll! i. = 0.5. lriangular region)

N lJo I .•=/0 00 a .•a:r/ lJ or .•arla 7"rO.~ur/a F: /Eo

4 1.63259 0.81242 0.89456 0.45!:X30 0.74053
8 1.63451 0.8t360 0.89328 0.45597 0.74002

12 t .63450 0.81360 0.89323 0.45597 0.74001
16 1.63450 0.81360 0.89323 0.45597 0.74001



Circular indusl0ns in solid under uma\lal tension 1523

Plane strain +0
(t) ,

~
I

5 G 6
r = -.J!.

GI

432

3.0

o 0 /1
I

I
I

I
I
I

-1.0

Fig. 5. M'l:'limlll11 interface stresses f\,r a single indllsi\>n (pbne strain. 1', ~ \'" = O.J).

As for the magnitudes of these maximum interface stresses. we have the following
relations depending on three ranges of r:

17",-",,,, > 17"".""" = 11,.""" > f'''.1lI." (for 0 < r < I)

17"".",." = 17,.",." > 11"1 ....." > f'I'.1lI.t\ (for I < r < I.IJ-l)

(26.1 )

(26.2)

(26.3)

The above behavior for extremely small inclusions is nearly maintained in the results
for zig·zag inclusions shown by Figs 6 9. Solid curves in these ligures show the analytical

-- Analysis

2.0 ---- Eqn (27.1)
··--·-·-Eqn (272)

O'al.mo. tI =0.5
0'

r=0.5
1.5~~~~=-----=~

2

-::::::::::::::::: \ 0.5
.....• I j

tI=l 'tI=0.5

02 0.4 06 A=..9. 0.8
b

Fig. 6. rT"lm.. 'U,



AnalysiS
Eqn (28)

U=1

r=l
1.0i-------~------~~

r=0.5

0.5 r=0.2

0.6 ,\=% 080.4

r=o
OL....--~.........--------'----~-

o 0.2

Fig. 7. (11111.m,n(T.

2.0
-- Analysis

------ Eqn (29)

,,
",-,,,,,

1.5 r---='iIlIlrlt!=~CXl......c:::::~~::~_

U=2

1.0i--'-------~.:....-~~----=

0.5 r=0.2

r=O.l

r=o

0.2 0.4 0.6 ,\= £ 08
b

1.0 Analysis
Eqn (30)

,0.5

~_.!.r~=~o.2~~~=- ----UU~0 5

0.4
o L.--_'-r.....=.;..o-'-_-'--_""-----'-'-----' .......

o 02

Fig. 9. 't,dmd\/fT.
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values of the maximum interface stresses for typical values of the parameters. As is seen in
Fig. 6. 11,11 rna' decreases with increasing values of r for fixed values of jt and i. if r < 3.33.
but the trend is reversed when r exceeds 3.33. The maxima of the other stress components
tend to increase monotonically when r increases. as shown by Figs 7-9. but the eRect of Jt
depends on rand ;.. and is not so consistent as that of r.

The locations (} of these stress maxima are also important. since they give useful
information on the initiation points of debonding or fracture of the inclusions. They are
nearly the same as shown in parentheses in eqns (19.1 )--(19";) and in Fig. 5 for a single
inclusion. In the special case of a sljuare array [Fig. 12(a)). the values of II for 11"l.mw 11/1llma,

and 11,.m." are the same as for a single inclusion except for the range r ~ 0.2 and ;. ;?: 0.5
where () takes some values between 0 and 90 . As for "".ma,' (} is 45 if i. < 0.3. but for
larger values of ;.. () increases or decreases from 45 according to whether r < I or r > I.
Further discussions will be made in Section 3.4 for special arrays of inclusions.

Figure 10 shows the stiffness factor E*/En plotted against ;. in a similar manner to that
for the stresses. Figure II is another diagram for E* En in which the abscissa ;. is replaced
by I: the volume fraction of the inclusions defined by eqn (23). We find that the E*iEIl V$

f curves for any fixed value of r in Fig. II lie within a band considerably narrower than
the corresponding E*/En vs;. curves in Fig. 10. (n other words. the stiffness factor E*/En
is only slightly alkcted by the parameter/: and it is nearly a function off A zig-lag array
orcin:ular indusions may he regarded as a typil'allllodcl or randomly distributed inclusions
in solids. Therefore. the <lbove ooservatinn seems to suggest a strong /~dependellceor the
tensile stilfness of actual solids.

3.3. Af'proxima/c IfJrfull/ac .lfW stresses alld /cmi/e .'itillile.V,\" .lfldor
In this section we propose reliahle forlllulae for the live quantities dist:ussed ahove.

They arc given as power series involving three parameters r. Jt. ;. or their suhstitutes. and
their wellicients arc determined so as to give the best lit to the analytical valucs in the least­
squares sense. The accurat:y of this kind of formulae is improved by taking higher order
terms. hut they can be truncated at the second- to the fourth-order terms for each parameter
without substantial loss of accuracy.

06 ),= £. 08
b

0402
0'---"'----'----'--......---'-----'--'---'
o

0.5

1.0 ~~~~:::::=-..I.:.1 _

1.5

r
Eo

--Analysis

2.0

Fig. 10. E· En vs i. rclatl\1I1S for various r and II.
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/.i=2

-- AnalySiS
_____ Eqn (31)

0.5

20

1.5

£
Eo

J~~~.o 01 0.2 03 04 0.5

Fig. II. EO /:'" vs r rdatiplls ror various r alld /1.

In e.:stahlishing the.:se.: formulae.:. we.: e.:onside.:r the.: following aspe.:cts.

(i) For solids without inclusions «(. = I). we.: must have.: (T,'I.",." = (Til ,I.",." = (T,.In." = (T,

r'".In;" = (T :! and /:''',E" = I. The.:se requirements are satislied by superposing positive power
series of (r - I) on the above known values for r = I.

(ii) The five quantities treated must remain finite.: in both the extreme eases, i.e. when
r -- 0 and r -- I,. This requirement is satisfied by replaeing the v;lriable introduced abme.
(r - I), by (r - I )I( r + "1), where A is a positive constant. It is re.:asonable to dete.:rrlline this
constant so as to give the.: best lit to the analytical values. The optimum value of A has bee.:n
found to be around unity by trial-and-error. and we have de.:eide.:d to use a new rigidity
paramete.:r II ddined by eqn (:!4).

(iii) As for parameters other than r, II and ;. are convenient I'm the stresse.:s. but II and
f are more suitabk for the stiffness factor E"! E" referring to the discussions regarding Figs
10 and II.

Taking the above into eonsideration, we have.: litted power series to the analytical
values including those fl)r the limiting case of;' -+ 0 calc.:ulated from e.:qns ( 19, I) (llJ.4J. The
resulting expressions for the stresses and stiffness 1~Ic.:tor are as follows:

(t'1/'1.1Il.1'l. )"-;.1,\1

(T
1-1.J5311+0.450/f-O.IX6/1'+I I I A;::,~,J;."~JI"'II"'-' (n.l)

I ·lJ m ... !l1I (/. , .
«(T"I.In,")' ,1 \l = 0,7X411- ().I77/I~ +O.O:!6/1 \+ f. f. f. A;::,~,' /' ~1t"'II" . ,

(f I "", II" II

(TOII,IlLI'

(T

. ,

I + I I I 1J~::,~,";.'II"'II"·'
I-II", -II" "

(:!8)

(J r,Il1.I\

(T

-
I + I I I Ci:':,,;.'II"'II"· I

,--, \I m.., I) " ,. 0

(29)

. . .
r,II.m,,, __ () - ~ ~ .r n"""1 "'II'" I.) + L L 2- 1m" ). JI

(f 1.""0",=0",,,,0

(30)
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(31 )

Values of the coefficients in eqns (Z7.l)-(3l) are shown in Table 2. For t1Hl.ma,!t1 only,
different formulae are proposed in two ranges r ~ 3.33 and r ~ 3.33, considering its
behavior as shown in Fig. 6.

Equations (27.1)-(30) give reliable values for r ~ 0.1 (I > {1 ~ -0.82), 0.5 ~ II ~ 2
and for i. within the hatched area of Fig. 4. Equation (31) is valid in the same ranges of r
and II and for f ~ 0.5. The bottom row of Table 2 shows the mean per cent errors for these
formulae. They are between 1.3% and 4% for the stresses, and less than 0.2% for the
stiffness factor.

Values from the above formulae are also shown in Figs 6-9 and II by dashed or dotted
curves. We find these formulae to be fairly accurate. In Fig. 6 for t1 lJ l.m",!t1, curves for
r < 0.5 are not shown. but eqn (27.1) is valid for r ~ 0.1 as mentioned above.

3.4. Special arrays of inclusions
We are most interested in the special .trrays of inclusions as shown in Figs 12('1) and

12(b). Analytical values of the maximum interface stresses and stiffness factor arc given by
solid curves in Figs 13-17 for the square array and in Figs Ig-22 for the equilateral
triangular array. The locations (} of the maximulll interface stresses arc usually the same
as shown in parentheses in eqns (19.1) -( 19.4) for a single inclusion. and arc shown at the
tops of the corresponding figures. As for the exceptional cases. values of (} arc also given
in parentheses in the figures. The curve for r = 0.1 in Fig. 13 is shown to l1uctuate in
inclination. since (} begins to increase from zero around i. '=: 0.5. For comparison. values of
trill 11 at (} =0 arc also given hy thin solid curves in Figs 13 and IX.

For these special arrays. we can estahlish two-parametric forlllulae which arc more
reliahle than the three-parametric forlllulae (27.1) -(31). They are the following equations

'L1hlc :!. Cocllicicnts in cllns (27.1) cH) (planc slram. \', ~ I'" = Il.J)

Af~~
IJf~:) Df~~)l m n Cl~~ glen

f:s3.33 n:3.33

0 0 0 2.7936 0.4610 0.5458 0.6131 0.3126 1.9864
0 0 I -6.5293 -2.6378 -0.Z780 -0.2:307 -0.1348 -0.5765
0 0 2 2.8987 3.7098 0.1068 0.1044 0.0383 0.1001
0 I 0 -8.3745 -1.4372 0.1003 0.0441 0.1043 0.0253
0 I I 17.043 6.3568 0.0494- 0.0135 0.0840 -0.1984-
0 1 2 -5.3930 -8.7575 -0.0655 -0.022B -0.0470 0.1186
0 2 0 3.4580 0.7992 -0.0703 -0.0128 -0.0420 -0.0113
0 2 1 -6.9820 -3.1400 -0.0141 -0.0082 -0.0342 0.0854
0 2 2 1.6925 3.7658 0.0259 0.0044 0.0215 -0.0392
1 0 0 OOסס.4- -28.840 2.4582 0.7494- 1.1971 0.2097
1 0 1 -4.9648 79.324 1.1515 0.0495 0.9533 6.3089
1 0 2 24.091 -52.771 -0.6819 -0.6333 -0.4201 -3.7038
1 1 0 17.778 72.011 -5.3514 -1.0097 -2.8198 -0.3869
1 1 I 5.939J -196.16 -2.33Z7 -0.6948 -2.5935 -8.5739
1 1 2 -86.171 1Z7.40 1.8348 1.0225 1.3545 3.8481
I 2 0 -11.023 -32.372 2.1258 0.2480 1.1735 0.1656
1 2 1 3.4860 85.618 0.8437 0.1923 1.0150 3.4263
1 2 2 30.372 -54.150 -0.7184 -0.3029 -0.5843 -1.7020
2 0 0 -6.1295 21.943 -5.6071 0.4256 -1.3977 -0.5777
2 0 1 32.099 -56.474 -3.5681 0.3494- -2.3343 -2.9757
2 0 2 -34.277 37.641 1.3ZJ9 1.1198 0.5995 11.646
2 1 0 7.4438 -55.636 12.145 -4.4411 2.8640 1.0053
2 1 1 -73.724 139.18 7.6228 -0.7173 5.9969 7.7313
2 1 2 100.39 -00.200 -3.4236 -1.0536 -1.8996 -16.160
2 2 0 2.8645 29.981 -5.5516 2.4770 -1.4947 -0.4554
2 2 1 30.636 -68.245 -3.0918 0.9338 -2.2826 -2.8784
2 2 2 -64.172 42.509 1.4630 0.1348 0.8950 7.0315

Mean error(~) 4.0 1.6 1.5 1.3 1.7 0.2
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Fig. 13. a"'m", a f"r square array (" = I l.



Square arra y 1529

r=o.s -=

(22")
osl__!r~=~o.~2 ---~~:~
. (8=12") (26")

r=O.1
---_ ..

),= .Q. 0.6
b

0.40.2
r=oO'--_........--'"_........._-"'--_..........__........._~

o

Fig. 14. rr"".m.. !rr for square array (It = 1).

Square array

CTr . ma • usually at 8=90'

Analysis

----- Eqn (34)

r=oS

r=O.l

1.S .-_-cr=CD

O.S r=o.2

r=l1.0 I---:.....-.:.-----------"'~

r=ooO'----------::'':--.........----:-''-:---..J.----:"0.2 0.4),= .Q. 0.6
b

Fig. 15. a,.m.. !a for square array (JI = I).

Square array

r".ma. usually at 8=4S'

Analysis

Eqn (35)

r=0.2
0.1

r=oo 0'------'-'--'--0.....2---'----0......4--"'""----'
), = .Q. 0.6

b

Fig. 16. tri•.m... !rr for square array (II = I).
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Square array

AnalySiS

----- Eqn (36)

\0 I

I

]:--------:--:--:~"~'
o 0.1 0.2 0.3 0.4 0.5

1.5

2.0

E'
Eo

Fig. 17. E'! I,'" for square array (I' ~ I).

3----

r=o.~
----~

:.~ -- AnalysIs

---- Eqn (371)
......... Eqn (37.2)

EquilatNal triangular array5-

2-

__~r~=0:.:.5:..._ ----=

(46·)

cr =""
: ,5

(9=45') r=3.33 (45·)
I

o0'-'---'---0.'"'-2--'---0.....·4---"---0...·6-).-=-'-'-a---'0'8
b

Fig. IS. rr"',n... ,'rr for equilalerallriangular array (II = 1//3).
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- b

0.4o

,0 !L'__-....:=:.:O::;5~ -------

oJ~._---.:.i..:=O~.2=___---~

J :~:,' ==
az

~:::,",ilcteral tnOng'.Jlor crray

cr'Q. "'a, usually at e= o·
I AnalySiS

I ----- Eqn (38)
f=CD1.5 - __ --- _

09~mQO r-[~~:=:=.::.::::.::.:.:.::::-~--~::::::
1--------
\ ~=l

---

Equilateral triangular array

0"."'0' usually at e= 90'

Analysis
----- Eqn (9)

f= CDL1.5 • ~~

f=O.S

f= I
10 t--......:...~------~~~~~

r=ol

~I f=2()' 1-....:-....::..---_

roo
02 04 06 .\= %0.8

/'ig. ~II. IT,,,,.,, IT t~,r<:quilal<:r;a1lriall~ular array (JI ~ I /3).

Ec;udateral triangular array

T'Q.",a, usually at 8=45'

1 -- AnalySis1.0 L.
----- Eqn (40)

T,QInao
r=CD (g=44) (4Z1

-(]"-I 5
(41') (37')

37j

oi
2 (44') (38")

1 (44') (is) ...(40')

. I OS (e::46') (SO') ___(54')
~(59i

L 0.2
(8=46') (31') ~~(60)

I 0.1 (59')

r::::o U3= £'6') (53')

0 0.2 0.4 0.6 ), = .f!- 0.8
b

Fi~. ~I. t"'m." IT for <:<luilal<:rallriangular arr;IY (JI = I ... J).
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Ec;uilctercl trlcnglolcr cr'::.y
0'

AnalysIs Z"
----- Eqn (41)E'

Eo

20

1.0 iE:::....----------~--..:-

1.5

05

0.50.4030.201

Ol--_--'__--'-__-'-__-'-_----'

o

(32.1) (3(1) for the square array valid in the range i. (; OJI. and equations (37.1) (41) for

lhe equilalerallriangular array valid in the range i. ( (Ui. (fil!.,,,.,, is n.:pn.:sented hy dill"erent
forlllulae inlwo ranges r ~ 3.33 ,lIld [. ;; 3.33. Otha quantilies are fitled to singlc formulae
in the whole range of I'. Thc accuracies ofeqns (27.1) (41) arc reasonahlc. as seen rrom
the lIlean per cenl errors given in parcntheses wilh each of the formulae.

Square array or inclusions (JI = I):

(rT//I,III," ) I - \ 1 \
I + {fl - 1.356 + 0.423{f - 0.141){f~ + O,070{f'

+ i. ~(- 2.043 + 3.436{f - 1,330{f~ + 2. 53lJ>{f 1)

+i. '((U';54+X.2X2{f-IO.563{f~-IX.72X{fl)

+ i. ~(4.426 - n.543{f + 14.574{f~ + 5X.076{f')]

(mcan error 4.0'Y.,) (32.1)

(aill,rn".)" ,,, = {f[O. 7X4 - O.I77{J + 0.026{f~ + i. ~ (0.21 I - 0.667{J - 0.5l)6{f~)
rr

+ i. 1(7.164 - 21.227{f + 14.lJ 15{f~ J+ i. '(2.2 f 6 - 1.8 f 7{I-O.lJ22{f)]

(mcan crror 1.4'Y.d (32.2)

(f'J""~,, = 1 + {f[O.675 - 0.21 O{f + O.052{;: - O.03J{f' + O.02X{f~
r;

+ i.( - 0.lJ43 - DAS2{1 + D. 722{f~ - D.I D2{f' - D.322{f')

+ i.:( I.J·lX + 1.526{f - 1.616{( - (U62{f' + U II{f~l]

(mcan error 1.3%) (33)
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t- P[0.649-0.211#+O.050pc -0.048#~+0.040{>~

+i.( - 0.179 - 0.398p + 0.789{3c + 0.304jJ' -O.652fJ~)

+i. '( - U IO+0.990p- 1.768jJc - I.603jJl + 2.31IjJ~)]

(mean error 0.7%) (34)

.1\ = 0.5 + /f[0.:H6 -0.077/$ + 0.OO2pc -0.018/$~ +0.0251$~

+ i.( - 0.486 -0.734/$ + O.6991$C+0.277/;1 -0.618P~)

+i.'(0.067+ 1.984/$- I.605pc-1.307/$~+2.067p4)]

(meun error 2.1%) (35)

+fIll 1.1)% - O. 726{/ + 0.244{$C + /(0.027 + 1.660/$ - 0.876// C)

+ IC( - 0.054 - 0.154{$ - 0.634{/') + /,(0.006+ 2.362{/ + 3.861/i')J

(mean error 0.1 'Yo). (36)

:ral triangular array of inclusions lit = I!./3):

(l1'i1Il.... lt ... \ II = I + lit _ 1.356 +0.423{$ -0.141)/$1 + 0.070{/ \
11

+ i. C( -(UQ5 + 1.534/$ -0.463/f + 0.202{/ 1)

+ i. 1( 1.810 - 3.03X{$ -0.466#' - 2.485/$1)

+i.~( -1.706+ 1.592/$+ 1.396{Jc+6.578/J 1
)}

(mean error 2.0%) (37.1)

+ i. \(0.997 - 2.H 14/J +0.766#C) + i. ~(0.327 -0.282{J + I.069#!)J

(mean error 0.9%) (37.2)

~"II.m.,\ = 1+ //[0.629 - 0.231{$ +0.069{Jc -0.046/$' + 0.024p~
a

+ i.(0.132 + 0.089# +0.212/$! +0.112/r1- 0.135/$~)

+ i. C( -0.562 -0.169/$ -0.359#' -0.365{J' +0.367/$~)J

(mean crror 1.1 %) (38)

11
.. ,m.I\ = I + {i[0.634 -0.191/$ +0.074f$c - 0.052f/~ + 0.046/J~

(j

+ i.(0.235 - 0.501fl +0.104{1' +0.266/J'-0.524f/~)

. '/ - 1.347 +0.820{i -0.017{IC -0.846{/~ + 1.240f$~)]

(mcan error 1.4% ) (39)
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r'H~~..'. = 0.5 + fJ[0.360 -0.08Ip -0.009/f -0.01.9fJ1 +0.037 fJ~
a

+ i.( -0.053 - 0.40 IfJ +0.586p: +0.358fJJ - 0.553P~)

+ i.:( -0.214 + 0.817 fJ - 1.01.4p: - 0.858fJJ + 1.150/J~)1

(mean error 1.3(10) (40)

c = ££* = 1+ ffJ[ 1.997 - O. 721fJ +0.242fJ: + f(O.O 10+ 3.478fJ - 1.838fJ:)
I)

+ F(0.078 - 3.614/> + 3.298fJC) + f\ - 0.245 + 5.260[> + 1.881 p:)]

(mean error 0.2%). (41)

Dashed and dotted curves in Figs 13-22 show the results from formulae (32.1 )-(41).
and we find these formulae to be highly accurate. In particular. eqns (36) and (41) for
£*/ £n give highly accurate values. as seen in Figs 17 and 22.

Finally. the numerical values for £*/£1) for these special arrays are given in Tables 3
and 4. taking i. instead off as the geometric parameter.

4. CONCLUDING REMARKS

;\ theoretical analysis was performed for an infinite zig-zag array of circular inclusions
in a two-dimensional solid under uniaxial tension. Computations were carried out for 330
combinations of mechanical and geometric parameters. and the maximum interface stresses
and tensile stifrness of the solid were calculated.

For any fixed values of Gil/G•. the tensile stitrness factor of the solid is little all'ected
by the distribution patlern of the inclusions. and is nearly a function of l the volume
fraction of the inclusions. This seems to suggest a strong./~dependem:e of the tensile stilrness
of adual solids with randomly distribulcd inclusions.

Results for the maximum interface stresses and the tensile stifrness factor were fitled
to power series formulae. They enabled us to obtain reliahle values for arhitrary com­
binations of the parameters.

'('ahle .'. /:'>,' /:'" for square array of inclusions

r
0 0.2 0.5 1.5 2.0 5.0 00

A

0.1 0.954 0.CJ73 0.988 1.006 1.010 1.017 1.024
0.2 0.823 0.895 0.954 1.024 1.038 1.070 1.CE7
0.3 0.631 0.777 0.898 1.054 1.007 1.163 1.22.9
0.4 0.414 0.631 0.824 1.098 1.160 1.308 1.443
0.5 0.216 0.482 0.740 1.158 1.264 1.535 1.815
0.6 0.072 0.354 0.654 1.240 1.417 1.943 2.653

Tahl,,-l. I,> 10'" for "'Iuda."ra) tri'lIlguiar array of inclusions

r
0 0.2 0.5 1.5 2.0 5.0

A

0.1 0.CJ73 0.985 0.993 1.003 1.006 1.010 1.014
0.2 0.899 0.940 0.CJ73 1.014 1.022 1.041 1.057
0.3 0.790 0.872 0.941 1.031 1.051 1.095 1.134
0.4 0.662 0.7f37 0.899 1.057 1.093 1.178 1.257
0.5 0.529 0.691 0.847 1.090 1.150 1.298 1.444
0.6 0.397 0.590 0.789 1.134 1.226 1.472 1.742
0.7 0.268 0.4f37 0.7Z7 1.188 1.326 1.731 2.256
0.8 0.146 0.388 0.661 1.255 1.457 2.134 3.284
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